skip to main content
US FlagAn official website of the United States government
dot gov icon
Official websites use .gov
A .gov website belongs to an official government organization in the United States.
https lock icon
Secure .gov websites use HTTPS
A lock ( lock ) or https:// means you've safely connected to the .gov website. Share sensitive information only on official, secure websites.


Search for: All records

Creators/Authors contains: "Nayak"

Note: When clicking on a Digital Object Identifier (DOI) number, you will be taken to an external site maintained by the publisher. Some full text articles may not yet be available without a charge during the embargo (administrative interval).
What is a DOI Number?

Some links on this page may take you to non-federal websites. Their policies may differ from this site.

  1. Free, publicly-accessible full text available October 30, 2026
  2. Free, publicly-accessible full text available August 28, 2026
  3. ABSTRACT Neuromesodermal progenitors (NMPs) are a vertebrate cell type that contribute descendants to both the spinal cord and the mesoderm. The undifferentiated bipotential NMP state is maintained when both Wnt signaling is active and Sox2 is present. We used transgenic zebrafish reporter lines to live-image both Wnt activity and Sox2 levels in NMPs and observed a unique cellular ratio in NMPs compared to NMP-derived mesoderm or neural tissue. We used this unique signature to identify the previously unknown anatomical position of a progenitor population that gives rise to midline tissues of the floor plate of the spinal cord and the mesodermal notochord. Thus, quantification of the active Wnt signaling to Sox2 ratio can be used to predict and identify cells with neuromesodermal potential. We also developed the auxin-inducible 2 degron system for use in zebrafish to test the temporal role that Sox2 plays during midline formation. We found that ectopic Sox2 in the presence of Wnt activity holds cells in the undifferentiated floor plate/notochord progenitor state, and that degradation of the ectopic Sox2 is required for cells to adopt a notochord fate. 
    more » « less
    Free, publicly-accessible full text available November 15, 2026
  4. Free, publicly-accessible full text available July 21, 2026
  5. Free, publicly-accessible full text available June 1, 2026
  6. Free, publicly-accessible full text available August 1, 2026
  7. Biomedical knowledge graphs (KGs) encode rich, structured information critical for drug discovery tasks, but extracting meaningful insights from large-scale KGs remains challenging due to their complex structure. Existing biomedical subgraph retrieval methods are tailored for graph neural networks (GNNs), limiting compatibility with other paradigms, including large language models (LLMs). We introduce K-Paths, a model-agnostic retrieval framework that extracts structured, diverse, and biologically meaningful multi-hop paths from dense biomedical KGs. These paths enable prediction of unobserved drug-drug and drug-disease interactions, including those involving entities not seen during training, thus supporting inductive reasoning. K-Paths is training-free and employs a diversity-aware adaptation of Yen's algorithm to extract the K shortest loopless paths between entities in a query, prioritizing biologically relevant and relationally diverse connections. These paths serve as concise, interpretable reasoning chains that can be directly integrated with LLMs or GNNs to improve generalization, accuracy, and enable explainable inference. Experiments on benchmark datasets show that K-Paths improves zero-shot reasoning across state-of-the-art LLMs. For instance, Tx-Gemma 27B improves by 19.8 and 4.0 F1 points on interaction severity prediction and drug repurposing tasks, respectively. Llama 70B achieves gains of 8.5 and 6.2 points on the same tasks. K-Paths also boosts the training efficiency of EmerGNN, a state-of-the-art GNN, by reducing the KG size by 90% while maintaining predictive performance. Beyond efficiency, K-Paths bridges the gap between KGs and LLMs, enabling scalable and explainable LLM-augmented scientific discovery. We release our code and the retrieved paths as a benchmark for inductive reasoning. 
    more » « less
    Free, publicly-accessible full text available August 3, 2026
  8. Abstract PurposeTo determine the feasibility of simultaneous multi‐slice (SMS) real‐time MRI (RT‐MRI) at 0.55T for the evaluation of cardiac function. MethodsCardiac CINE MRI is routinely used to evaluate left‐ventricular (LV) function. The standard is sequential multi‐slice balanced SSFP (bSSFP) over a stack of short‐axis slices using electrocardiogram (ECG) gating and breath‐holds. SMS has been used in CINE imaging to reduce the number of breath‐holds by a factor of 2–4 at 1.5T, 3T, and recently at 0.55T. This work aims to determine if SMS is similarly effective in the RT‐MRI evaluation of cardiac function. We used an SMS bSSFP pulse sequence with golden‐angle spirals at 0.55T with an SMS factor of three. We cover the LV with three acquisitions for SMS, and nine for single‐band (SB). Imaging was performed on 9 healthy volunteers and 1 patient with myocardial fibrosis and sternal wires. A spatio‐temporal constrained reconstruction is used, with regularization parameters selected by a board‐certified cardiologist. Images were quantitatively analyzed with a normalized contrast and an Edge Sharpness (ES) score. ResultsThere was a statistically significant 2‐fold difference in contrast between SMS and SB and no significant difference in ES score. The contrast for SMS and SB were 13.38/29.05 at mid‐diastole and 10.79/22.26 at end‐systole; the ES scores for SMS and SB were 1.77/1.83 at mid‐diastole and 1.50/1.72 at end‐systole. ConclusionsSMS cardiac RT‐MRI at 0.55T is feasible and provides sufficient blood‐myocardium contrast to evaluate LV function in three slices simultaneously without any gating or periodic motion assumptions. 
    more » « less
    Free, publicly-accessible full text available April 1, 2026
  9. Free, publicly-accessible full text available September 1, 2026
  10. Mechanical forces play a critical role in tendon development and function, influencing cell behavior through mechanotransduction signaling pathways and subsequent extracellular matrix (ECM) remodeling. Here, we investigate the molecular mechanisms by which tenocytes in developing zebrafish embryos respond to muscle contraction forces during the onset of swimming and cranial muscle activity. Using genome-wide bulk RNA sequencing of FAC-sorted tenocytes we identify novel tenocyte markers and genes involved in tendon mechanotransduction. Embryonic tendons show dramatic changes in expression ofmatrix remodeling associated 5b(mxra5b),matrilin 1(matn1), and the transcription factorkruppel-like factor 2a(klf2a), as muscles start to contract. Using embryos paralyzed either by loss of muscle contractility or neuromuscular stimulation we confirm that muscle contractile forces influence the spatial and temporal expression patterns of all three genes. Quantification of these gene expression changes across tenocytes at multiple tendon entheses and myotendinous junctions reveals that their responses depend on force intensity, duration, and tissue stiffness. These force-dependent feedback mechanisms in tendons, particularly in the ECM, have important implications for improved treatments of tendon injuries and atrophy. 
    more » « less
    Free, publicly-accessible full text available March 27, 2026